### FEA ANALYSIS OF SHOWERHEAD

m



## introduction

### **SHOWERHEAD:**

- This study focuses on the FEA analysis of a plasma-producing showerhead, aiming to improve its efficiency and reliability.
- The primary goal is to maintain a constant temperature throughout the wafer from the shower head.
- In this study, varying critical design factors are heater coil length, cooling channel path, coolant flow rate, thermal gasket material, gasket diameter, and power input conditions.





## **DESIGN OPTIMIZATION OF SHOWERHEAD**

### **Objective:**

- Optimize the heater coil and cooling channel design.
- Limit temperature variation on the showerhead to 5°C.

### Methodology:

- Performed a steady-state thermal analysis for the showerhead.
- Performed a parametric study by varying:
  - a) Heater coil length
  - b) Cooling channel path
  - c) Coolant flow rate
  - d) Thermal gasket material
  - e) Gasket diameter
  - f) Power input conditions
- The problem can be solved either by FEA or CFD approach.
- FEA is a cost and time-saving approach while the CFD approach involves greater time and cost investment.
- The challenge with FEA is to compute the heat transfer coefficients for the cooling channel analytically.
- Both FEA and CFD simulations were performed for one design configuration, and results were compared.
- Analytically calculated heat transfer coefficients(HTC) were in close correlation with computed values by CFD.
- FEA approach was used for other design configurations.
- The cooling channel was divided into 4 equal segments of length and HTC for each segment is defined.
- Ansys solver is used for the simulation.

## **SHOWERHEAD ANATOMY**



## LOADS AND BOUNDARY CONDITIONS



- Heater load of 0.46 to 6kW is applied to heater volume.
- Heat transfer coefficients (HTC) are applied to the walls of the cooling channel.
- Inlet fluid temperature = 25 to 65 °C

٠

Inlet fluid volume flow rate = 4 or 6 GPM

Cooling channel segments A, B, C, & D

## HEAT TRANSFER COEFFICIENT CALCULATIONS

(8.19)

### Step 1: Reynolds number computation

$$\mathrm{Re} = rac{
ho uL}{\mu} = rac{uL}{
u}$$

where:

- $\rho$  is the density of the fluid (SI units: kg/m<sup>3</sup>)
- *u* is the flow speed (m/s)
- $\bullet\,L$  is a characteristic linear dimension (m)
- $\mu$  is the dynamic viscosity of the fluid (Pa·s or N·s/m<sup>2</sup> or kg/(m·s))
- v is the kinematic viscosity of the fluid (m<sup>2</sup>/s).

### Step 2: Wall friction coefficient computation

 $f = \frac{64}{Re_0}$ 

For fully developed turbulent flow, the analysis is much more complicated, and we must ultimately rely on experimental results. Friction factors for a wide Reynolds number range are presented in the *Moody diagram* of Figure 8.3. In addition to depending on the Reynolds number, the friction factor is a function of the tube surface condition. It is a minimum for *smooth* surfaces and increases with smooth surface condition are of the form

| $f = 0.316 Re_D^{-1/4}$                 | $Re_D \leq 2 \times 10^4$                   | (8.2    |
|-----------------------------------------|---------------------------------------------|---------|
| $f = 0.184 Re_D^{-1/5}$                 | $Re_D \gtrsim 2 \times 10^4$                | (8.2    |
| s been developed by Petukhov [4] and is | mpasses a large Reynolds nur<br>of the form | nber ra |
| $f = (0.790 \ln Re_D - 1.64)^{-2}$      | $3000 \leq Re_p \leq 5 \times 10^6$         | (8      |

### Step 3: Nusselt number computation

### Gnielinski Equation

Although the **Dittus-Boelter** and **Sieder-Tate equations** are easily applied and are certainly satisfactory for the purposes of this article, errors as large as 25% may result from their use. Such errors may be reduced through the use of more recent, but generally more complex, correlations such as the **Gnielinski correlation**. This equation is valid for tubes over a large Reynolds number range including the transition region.

| Correlation: Gnielinski                                                                                                                                                                      | Validity:                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| $Nu_{Dh} = \frac{(f/8)(Re_{Dh} - 1000)Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$<br>where:<br>Dh is the hydraulic diameter [m]<br>Re is the Reynolds number [-]<br>Pr is the Prandtl number [-] | $0.5 \le Pr \le 2000$<br>$3000 \le Re_{Dh} \le 5 \times 10^6$ |
| Nu is the Nusselt number [-]<br>f is the Darcy friction factor [-]                                                                                                                           |                                                               |

### Step 4: Heat transfer coefficient computation

$$h = \frac{Nu_{Dh} \times k}{D}$$

Where, h- heat transfer coefficient

Nu – Nusselt number

- k Thermal conductivity of the fluid
- D- Hydraulic diameter of the tube/channel

## **HEAT TRANSFER COEFFICIENT COMPARISION**



## FEA AND CFD RESULTS COMPARISION



Overall Temperature – FEA approach





## FEA AND CFD RESULTS COMPARISION

### Standard Heater design with Plasma load=3kW





Shower head Temperature – CFD approach

## **REDUCED HEATER – SHOWERHEAD TEMPERATURE**

### Reduced heater design with Plasma load=3kW & Heater load=0.46kW



Shower head - Bottom Side Heater overlaid



Shower head, Heater & Cooling channel overlaid

Maximum temperature of 82.2 °C and minimum temperature of 78.5 °C observed on bottom side of Showerhead. Hence a ΔT=3.7 °C exists and is with in the desirable range. Average temperature over the bottom surface is 79.4 °C and is close to the requirement specifications.

## **Overall Comparison Table**

| Heater Path        |        | Lower Thermal<br>Gasket                                            | Upper<br>Thermal<br>Gasket                                 | Heater Power<br>(kW) | Plasma Load<br>(kW) | Coolant Flow<br>(GPM) | Coolant<br>Temperature<br>(°C) | Showerhead Temperature ( <sup>o</sup> C) |            |            |
|--------------------|--------|--------------------------------------------------------------------|------------------------------------------------------------|----------------------|---------------------|-----------------------|--------------------------------|------------------------------------------|------------|------------|
|                    |        |                                                                    |                                                            |                      |                     |                       |                                | ΔΤ                                       | Max. Temp. | Avg. Temp. |
| Standard<br>Heater | CASE 1 | OD = same as<br>showerhead<br>Thermal Impedance<br>= .244 C-in^2/W | OD = 12.7"<br>Thermal Impedance<br>= .110 C-in^2/W         | 0                    | 3                   | 4                     | 30                             | 7.4                                      | 89.5       | 86.4       |
| Reduced Heater     | CASE 1 | OD = same as<br>showerhead<br>Thermal Impedance<br>= .244 C-in^2/W | OD = 12.7"<br>Thermal Impedance<br>= .110 C-in^2/W         | 0                    | 3                   | 4                     | 30                             | 4.3                                      | 85.1       | 82.6       |
|                    | CASE 3 | 13.76 OD<br>0.273 C-in <sup>2</sup> /W<br>thermal impedance        | 8.53 OD<br>0.078 C-in <sup>2</sup> /W<br>thermal impedance | 0.46                 | 3                   | 6                     | 25                             | 25.1                                     | 114.5      | 105.0      |
|                    | CASE 5 |                                                                    | 10.5 OD<br>0.093 C-in <sup>2</sup> /W<br>thermal impedance | 0.46                 | 3                   | 6                     | 25                             | 3.7                                      | 82.2       | 79.4       |

All temperature values are in °C

## **Overall Comparison Table**

| Heater Path        |         | Lower Thermal<br>Gasket                                            | Upper<br>Thermal<br>Gasket                                 | Heater Power<br>(kW) | Plasma Load<br>(kW) | Coolant Flow<br>(GPM) | Coolant<br>Temperature<br>(°C) | Showerhead Temperature ( <sup>o</sup> C) |            |            |
|--------------------|---------|--------------------------------------------------------------------|------------------------------------------------------------|----------------------|---------------------|-----------------------|--------------------------------|------------------------------------------|------------|------------|
|                    |         |                                                                    |                                                            |                      |                     |                       |                                | ΔΤ                                       | Max. Temp. | Avg. Temp. |
| Standard<br>Heater | CASE 2A | OD = same as<br>showerhead<br>Thermal Impedance<br>= .244 C-in^2/W | OD = 12.7"                                                 | 6                    | 0                   | 4                     | 30                             | 18.3                                     | 115.6      | 108.8      |
|                    | CASE 2B |                                                                    | = .110 C-in^2/W                                            | 5                    | 0                   | 4                     | 30                             | 15.3                                     | 101.9      | 96.2       |
| Reduced Heater     | CASE 2A | OD = same as<br>showerhead                                         | OD = 12.7"<br>Thermal Impedance<br>= .110 C-in^2/W         | 4.6                  | 0                   | 4                     | 30                             | 19.9                                     | 95.1       | 84.1       |
|                    | CASE 2B | Thermal Impedance<br>= .244 C-in^2/W                               |                                                            | 3.6                  | 0                   | 4                     | 30                             | 15.7                                     | 81.3       | 72.8       |
|                    | CASE 4  | 13.76 OD<br>0.273 C-in <sup>2</sup> /W<br>thermal impedance        | 8.53 OD<br>0.078 C-in <sup>2</sup> /W<br>thermal impedance | 4.14                 | 0                   | 6                     | 65                             | 10.6                                     | 120.7      | 116.9      |
|                    | CASE 6  |                                                                    | 10.5 OD<br>0.093 C-in <sup>2</sup> /W<br>thermal impedance | 4.14                 | 0                   | 6                     | 65                             | 14.2                                     | 107.4      | 99.5       |

All temperature values are in °C

## **CONCLUSION AND BENEFITS**

### **Conclusion:**

- For plasma load with standard heater, the temperature variation ΔT is 7.4 °C and a average temperature of 86.4 °C is
  observed while with a reduced heater the temperature variation ΔT is 4.3 °C and a average temperature of 82.6 deg C is
  observed. Hence showerhead with reduced heater gives design with less variation in temperature.
- For the reduced heater case with 3kW plasma load and 0.46kW heater load, maximum temperature of 82.2 °C and minimum temperature of 78.5 °C observed on bottom side of Showerhead. Hence a ΔT=3.7 °C exists and is with in the desirable range. Average temperature over the bottom surface is 79.4 °C and is close to the requirement specifications.

### **Benefits:**

- Simulations were performed using the FEA approach to save computational cost and time.
- Customer saved both in prototyping and development costs.

## CONTACT US

### Advanced Engineering Services

https://aesgs.com



# **THANK YOU**

